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a b s t r a c t 

The 2-D steady-state heat transfer in a hollow hemi-sphere subjected to an arbitrary general heat flux 

on its pole, and convective cooling at the inner surface, is studied analytically. Closed-form mathematical 

expressions for temperature distribution and non-dimensional thermal resistance as a function of radii 

ratio, contact angle, and the Biot number, are derived and presented for two cases that simulate the flux 

distribution from isoflux and isothermal heat sources. The analytical solution is verified by using a finite- 

element numerical solution, developed in a commercially-available software, and comparing the results. 

Moreover, it is demonstrated that the present fundamental analysis provides a general solution for other 

problems found in the literature, including spreading resistance in hollow spheres with insulated walls, 

as well as the heat source on a half-space and infinite disk with an isothermal end. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In many applications, the estimation of thermal resistance plays 

 vital role in ensuring the proper design and operation of en- 

ineered devices. Mathematical expressions for thermal resistance 

re available in the literature for basic shapes in cartesian, cylindri- 

al, and spherical coordinates. However, the problem of determin- 

ng the spreading thermal resistance that occurs whenever heat 

eaves the heat source to a larger region cannot be evaluated by 

imple 1-D analytical models. This problem is encountered in dif- 

erent design areas, including heat sinks, cooling applications [1–

] , and granular packed beds [8] . Exact solutions from analytical 

odels are more favorable than approximate solutions from com- 

utational methods, as they offer compact expressions that can be 

asily and quickly evaluated. For this reason, there is notable inter- 

st in developing analytical closed-form models to estimate ther- 

al spreading resistance. Kennedy [9] investigated the heat con- 

uction in semiconductor devices by considering the heat trans- 

er within a homogeneous, finite, solid cylinder from a circular 

ource fixed at one of its ends. Different combinations of boundary 

onditions at the other surfaces in the domain were considered, 

nd equations that describe the spreading resistance and tem- 

erature distribution were presented graphically. Muzychka et al. 

10] used the separation of variables method to provide a gen- 
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ral solution for thermal spreading resistance of an eccentric heat 

ource on a rectangular flux channel. It was shown that the pre- 

ented solution can be used for single and multiple discrete heat 

ources on isotropic and compound flux channels by using su- 

erposition. Yovanovich et al. [11] presented a closed-form solu- 

ion for the non-dimensional thermal resistance of a rectangular 

soflux heat source on a compound two-layer body with convective 

r conductive cooling at one boundary. Using the Fourier expan- 

ion method, Feng and Xu [12] developed a three-dimensional an- 

lytical model to determine the resistance of a rectangular isoflux 

ource fixed on the top of cubic heat spreaders used in electronic 

ooling. Yovanovich [13] developed a general model for spread- 

ng/constriction resistance for a circular source on a finite circu- 

ar cylinder with side and end cooling. The validity of the model 

or special cases was discussed. Yovanovich et al. [14] presented 

n analytical solution to estimate the thermal resistance of hol- 

ow spheres subjected to heat flux on a finite area at their poles, 

ith the spheres assumed to be insulated from the inner surface. 

he authors [14] compared their results with a half-space and two- 

one models. Using the Maxwell coordinate system, Rahmani et al. 

15] developed a model for spreading resistance in a curved-edge 

eat spreader. Huang et al. [16] presented a general solution for 

preading resistance of multiple heat sources on a rectangular flux 

hannel under non-uniform convective cooling. Using the separa- 

ion of variables method, Hsieh et al. [17] presented a 3-D ana- 

ytical solution for the spreading resistance of centrally-positioned 

eat sources of a vapor chamber heat sink. Analytical solutions 

or spreading resistance in compound and orthotropic systems, 
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Fig. 1. Model for an insulated hollow hemi-sphere subjected to an arbitrary general 

heat flux on its pole, and convective cooling at the inner surface. 

e

w

p

a

A

a

d

μ

r

r

t

T

w

J

M

T

fi

o

fi  

m

b  

g

T

A

B

Nomenclature 

Subscripts 

sink related to heat sink 

source related to heat source 

Greek symbols 

α half-contact angle [rad] 

χ relative disk thickness [-] 

ε radii ratio [-] 

ϑ non-dimensional contact angle [-] 

Roman symbols 

a inner radius [m] 

A c contact area [ m 

2 ] 

b outer radius [m] 

Bi Biot number [-] 

c chord, circular source radius [m] 

h convective heat transfer coefficient [W/m 

2 -K] 

k thermal conductivity [W/m-K] 

Q total heat transfer rate [W] 

q heat flux [W/m 

2 ] 

R thermal resistance [K/W] 

r radius [m] 

R ∗ non-dimensional thermal resistance [-] 

T temperature [K] 

t thickness [m] 

ith and without cooling, have been reviewed by Muzychka et al. 

18] for cylindrical and rectangular geometries. Yovanovich et al. 

19] also reviewed analytical models to calculate thermal spreading 

esistance for compound disks, heat flux tubes and infinite layers 

n perfect contact with half-space. Razavi [20] presented a series 

f analytical solutions of the thermal spreading resistance for cir- 

ular flux tubes and rectangular flux channels. Different boundary 

onditions were considered along the walls, source plane, and sink 

lane. The author [20] investigated the effect of the size of the heat 

ource, thickness of the channels, and Biot number on the thermal 

esistance. Recently, Delouei et al. [21] investigated the steady-state 

eat conduction in thick hollow spheres by presenting an analyti- 

al solution that covers two boundary conditions, namely, variable 

eat flux and variable temperature. 

One geometry that has not been investigated in the literature, 

s the thermal spreading resistance of a hollow hemi-sphere sub- 

ected to a heat flux on its pole and convective cooling at the 

nner surface. This problem becomes important, for example, in 

etroleum and cryogenic industries when heat leaks through the 

torage tanks to the stored fluids. These tanks often have a spher- 

cal shape to provide even distribution of stresses on the surfaces, 

nd they are well-insulated. Heat may leak through spots with im- 

erfect insulation, and that results in elevated temperatures and 

ressure, and in extreme cases, possible explosions. As the stored 

uid inside the tank absorbs heat, natural convection inside the 

ank will occur. The aim of this study is to develop an analyti- 

al closed-form solution to determine the thermal spreading resis- 

ance for arbitrary isoflux and isothermal heat sources in a hollow 

emi-sphere with convective heat transfer from the inner surface, 

nd the associated temperature distribution. 

. Mathematical modeling 

Consider an insulated hollow hemi-sphere subjected to arbi- 

rary heat flux from a heat source on a finite area at the outer 

adius with 2 α contact angle, and convective cooling at the inner 

urface, as shown in Fig. 1 . The 2-D steady-state governing energy 
2 
quation in the spherical coordinates is: 

1 

r 2 
∂ 

∂r 

(
r 2 

∂T 

∂r 

)
+ 

1 

r 2 sin ( θ ) 

∂ 

∂θ

(
sin ( θ ) 

∂T 

∂θ

)
= 0 (1) 

here, r and θ are spherical coordinates. Introducing new inde- 

endent variable μ = cos ( θ ) , the above equation can be written 

s: 

1 

r 2 
∂ 

∂r 

(
r 2 

∂T 

∂r 

)
+ 

1 

r 2 
∂ 

∂μ

[(
1 − μ2 

) ∂T 

∂μ

]
= 0 (2) 

ssuming isothermal conditions far away from the source contact 

rea, the boundary conditions for the equivalent analytical model 

epicted by Fig. 1 are: 

= 0 , a � r � b, T = 0 (3a) 

 = a, 0 � μ � 1 , −k 
∂T 

∂r 
+ hT = 0 (3b) 

 = b, 
∂T 

∂r 
= 

{
0 � μ � cos ( α) , 

q ( μ) 
k 

cos ( α) � μ � 1 , 0 

(3c) 

Using the separation of variables, the general form of tempera- 

ure distribution is assumed to be as follows: 

 ( r, μ) = J ( r ) · M ( μ) (4) 

here: 

 ( r ) = 

∞ ∑ 

n 

[
C 1 n r 

n + C 2 n r 
−( n +1 ) 

]
(5) 

 ( μ) = D 1 n P n ( μ) + D 2 n Q n ( μ) . (6) 

he Legendre polynomials of the second kind Q n ( μ) become in- 

nite at μ = ±1 , therefore, they are excluded from the solution 

n the physical grounds. Because of the boundary condition of the 

rst kind at μ = 0 ( Eq. (3a) ), Legendre polynomials of even degree

ust be excluded, and only polynomials with odd degree should 

e considered ( n = 1 , 3 , 5 , . . . ) [22] . Accordingly, the solution can be

iven as: 

 ( r, μ) = 

∞ ∑ 

n,odd 

[
A n r 

n + B n r 
−( n +1 ) 

]
P n ( μ) . (7) 

pplying the second boundary condition ( Eq. (3b) ) in Eq. (7) gives: 

 n = 

n a ( n −1 ) − h 
k 

a n 

( n + 1 ) a −( n +2 ) + 

h a −( n +1 ) 
A n (8) 
k 
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y defining the radii ratio ε = a/b, the coefficient φn = B n /A n ,

nd introducing the non-dimensional Biot number Bi = ha/k , 

q. (7) becomes: 

 ( r, μ) = 

∞ ∑ 

n,odd 

A n 

[
r n + φn r 

−( n +1 ) 
]
P n ( μ) (9) 

here: 

n = b 2 n +1 ε 2 n +1 ϒn (10) 

n = 

n − Bi 

( n + 1 ) + Bi 
(11) 

pplying the third boundary condition by substituting Eq. (3c) in 

q. (9) : 

q ( μ) 

k 
= 

∞ ∑ 

n,odd 

A n 

[
n b n −1 − ( n + 1 ) φn b 

−( n +2 ) 
]
P n ( μ) (12) 

tilizing the orthogonality property of Legendre function, the fol- 

owing equation can be obtained: 

 1 

0 

q ( μ) 

k 
P n ( μ) d μ= 

∞ ∑ 

n,odd 

A n 

[
n b n −1 −( n + 1 ) φn b 

−( n +2 ) 
] ∫ 1 

0 

P 2 n ( μ) d μ

(13) 

ecalling that q ( μ) = 0 in 0 � μ � cos ( α) range, and that 
 1 
0 P 2 n ( μ) dμ = 

1 
2 n +1 [22] , the coefficient A n is determined as: 

 n = 

b ( 1 −n ) 

k 

( 2 n + 1 ) 

[ n − ( n + 1 ) ε 2 n +1 ϒn ] 

∫ 1 

cos ( α) 

q ( μ) P n ( μ) dμ. (14) 

fter substituting Eq. (10) and Eq. (14) in Eq. (9) , the expression 

or the temperature distribution can be written in the following 

orm: 

 ( r, μ) = 

b 

k 

∞ ∑ 

n,odd 

2 n + 1 

[ n − ( n + 1 ) ε 2 n +1 ϒn ] 
×

∫ 1 

cos ( α) 

q ( μ) P n ( μ) dμ

×
[(

r 

b 

)n 

+ ε 2 n +1 ϒn 

(
r 

b 

)−( n +1 ) 
]

P n ( μ) (15) 

he thermal resistance can be defined as: 

 = 

T source − T sink 

Q 

(16) 

here, T source and T sink are the source and sink average tempera- 

ures, respectively. Here we take T sink as the bulk temperature of 

he fluid inside the hemi-sphere. For convenience, this tempera- 

ure is taken as T sink = 0 . The source average temperature can be 

etermined by: 

 source = 

1 

A c 

∫ ∫ 
A c 

T ( b, μ) d A c . (17) 

he elemental contact area for the heat flux: 

 A c = 2 πb 2 sin ( θ ) dθ = 2 πb 2 dμ (18) 

he total contact area, therefore, is: 

 c = 2 πb 2 [ 1 − cos ( α) ] (19) 

q. (17) can be written as: 

 source = 

1 

[ 1 − cos ( α) ] 

∫ 1 

cos ( α) 

T ( b, μ) dμ (20) 

he total heat flux is determined by: 

 = 

∫ ∫ 
A c 

q ( θ ) d A c = 2 πb 2 
∫ 1 

cos ( α) 

q ( μ) dμ. (21) 
3 
ubstituting Eq. (17) , 21 in Eq. (16) : 

 = 

1 

2 πbk [ 1 − cos ( α) ] 
∫ 1 

cos ( α) 
q ( μ) dμ

∞ ∑ 

n, odd 

( 2 n + 1 ) 
(
1 + ε 2 n +1 Y n 

)
[ n − ( n + 1 ) ε 2 n +1 Y n ] 

×
∫ 1 

cos (α) 
q ( μ) P n ( μ) dμ ×

∫ 1 

cos (α) 
P n ( μ) dμ (22) 

aking the cord, c = b sin ( α) , as a characteristic length, a non- 

imensional thermal resistance can be defined as: 

 

∗ = kcR (23) 

.1. Special cases 

The present analysis can be considered as a general solution for 

ifferent problems found in the literature. These special cases will 

e discussed in the following sections. To extend the present anal- 

sis, we consider the cases with an isothermal heat source. How- 

ver, this will result in a mixed boundary condition at the outer 

adius (see Fig. 1 and Eq. 3c ) and the problem will be difficult to

olve in this form. To solve this, Yovanovich et al. [14] presented a 

eneral form for contact-area flux distribution: 

 ( μ) = q 0 [ μ − cos ( α) ] 
ν (24) 

here, q 0 is a convenient heat flux level. In the above expressions, 

he case when ν = 0 results in a uniform heat flux, while ν = −1 / 2

ives a flux distribution that has its minimum at the center of the 

ontact area, the latter has the same form as a flux distribution 

ver an isothermal circular contact situated on the surface of an 

solated half-space. This flux distribution can be taken as a good 

pproximation for the mixed boundary condition in the spherical 

oordinates. When considering the isothermal source condition, it 

s useful to define a non-dimensional contact angle as ϑ = 2 α/π . 

.1.1. Thermal resistance of a hollow sphere 

As mentioned in Section 1 , the work done by Yovanovich et al. 

14] considered the thermal resistance of a full sphere subjected to 

n arbitrary flux over their poles with no heat transfer from the 

nner surface (insulated). For the case when the convective heat 

ransfer coefficient h → 0 in Eq. (3b) , the generalized analysis pre- 

ented herein can be used to provide a solution for the problem 

nvestigated by Yovanovich et al. [14] , as illustrated by Fig. 2 a. The

on-dimensional thermal resistance of sphere is twice of that ex- 

ressed by Eq. (23) ( R ∗ = 2 kcR ). 

.1.2. Spreading resistances in half-space 

When the non-dimensional contact angle approaches zero, ϑ → 

 (corresponds to c → 0 ), and ε → 0 , this case can be considered 

o be a good approximation for the thermal spreading resistance 

f a circular source, with a radius c, in a half-space ( Fig. 2 b). The

preading resistance in a half-space is taken as that defined by 

q. (23) , R ∗ = kcR [23] . 

.1.3. Spreading resistance of isothermal circular source on thin 

nfinite disk 

The present model can also be used to estimate the thermal 

preading resistance of a circular source, with a radius c, on a thin 

nfinite disk that has t thickness (see Fig. 2 c). This can be realized 

hen ϑ → 0 and h → ∞ , and setting ν = −1 / 2 in Eq. (24) to sim-

late the isothermal source condition. The definition of the resis- 

ance for this special case is R ∗ = 4 kcR, as suggested by Yovanovich 

13] . This resistance is a function of the relative disk thickness 

= t/c. For the hemi-spherical geometry illustrated by Fig. 1 , it 

an be defined as χ = ( b − a ) /c = ( 1 − ε ) / sin ( α) . 
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Fig. 2. Special cases: (a) Hollow sphere subjected to heat flux, (b) Spreading resistance in half-space (circular source), (c) Isothermal circular source on thin infinite disk. 
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. Results and discussion 

.1. Hollow hemi-sphere 

To evaluate the expressions for the temperature distribution 

nd dimensionless thermal resistance, a computer code was writ- 

en, and the solution was obtained using MATLAB software. As 

here is no available experimental data in the open literature 

o verify the analytical model and the code, the problem was 

olved by following a strict computational (finite-element) mod- 

ling approach using the COMSOL Multiphysics software package 

5.4 (finite-element numerical method) [24] . A 3-D hemi-sphere 

as modeled with boundary conditions, with extremely fine mesh 

to avoid any uncertainties associated with mesh dependency), and 

 steady-state heat transfer study was conducted by applying a 

onstant and uniform heat flux ( ν = 0 ) at the pole, and a convec-

ive heat flux at the inner surface. The temperature distribution, 

ormalized by the maximum temperature (at θ = 0 ), from the an- 

lytical and numerical models is presented in Fig. 3 for different 

alf-contact angle values ( α = 1 ◦, 5 ◦, 10 ◦, and 15 ◦). It is clear from

igs. 3 (a) to 3 (d), that the results from the 2-D steady-state ana-

ytical model are in very good agreement with the 3-D numerical 

olution. 

Fig. 4 depicts the variation of the non-dimensional thermal re- 

istance with respect to ε and Bi, for different α values. Results 

hown by Figs. 4 (a) to 4 (d) indicate that, for low values of Bi ( ≤ 1 ),

he thermal resistance increases rapidly with the increase in ε. This 

s because the inner wall of the hemi-sphere will act as an adia- 

atic surface ∂T 
∂r 

∣∣
r= a → 0 , and heat has to be spread through a re-

tricted path in the angular direction of a thin wall (large values 

f ε). On the other hand, when Bi values are high enough ( ≥ 10 ),

hinner walls facilitate the spreading of the heat to the inner sur- 

ace, resulting in lower thermal resistances. It can also be observed 

hat, for very small values of ε ( ≤ 0 . 2 ), i.e., thin spherical shells, the
4 
hermal resistance curves converge to a single value of 0.27–0.30 

hen α is within 1 –15 ◦ range. It is worth noting that it might be 

isleading to conclude from Fig. 4 that the resistance is higher for 

arge α values. In fact, although the average source temperature 

s lower for smaller α, hence the thermal resistance is lower, the 

ine function in the definition of the non-dimensional resistance 

 Eq. (23) ) is greater for larger α. 

.2. Hollow sphere 

Table 1 compares the results from the present model and those 

resented by Yovanovich et al. [14] for thermal resistance of a hol- 

ow sphere with α = 5 ◦, as discussed in Section 2.1.1 . By using the

xpression for the heat flux distribution given by Eq. (24) , it can be

oncluded that the results are in a very good agreement, for both 

soflux ( ν = 0 ) and isothermal ( ν = −1 / 2 ) cases, with a maximum

elative difference of � 2%. 

.3. Heat spreading in a half-space from a circular source 

The results from the present analysis, using spherical coor- 

inates, is compared with that presented by Bejan and Kraus 

23] (cylindrical coordinates) for heat spreading in a half-space, 

onsidering a circular heat source. This comparison is presented in 

able 2 for isoflux and isothermal heat sources. The relative differ- 

nce between the two modeling approaches is less than 2%. 

.4. Isothermal circular source on an infinite disc 

Table 3 shows the calculated non-dimensional resistance con- 

idering the approach discussed in Section 2.1.3 for isothermal cir- 

ular source on an infinite disk. The results, shown for different 

elative thickness χ, are compared with the values presented by 

ovanovich [13] . The relative difference between the results is less 
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Fig. 3. Normalized temperature distribution ( T /T max ) from the 2-D analytical and 3-D numerical models for: (a) α = 1 ◦, (b) 5 ◦, (c) 10 ◦, (d) 15 ◦ . For all cases, ε = 0 . 5 , Bi = 20 , 

ν = 0 . 

Table 1 

Non-dimensional spreading thermal resistance of a hollow sphere subjected to flux over its poles. 

ε R ∗ = 2 kcR ( ν = 0 ) R ∗ = 2 kcR ( ν = −1 / 2 ) 

Yovanovich et al. [14] Present analysis Difference [%] Yovanovich et al. [14] Present analysis Difference [%] 

0 0.5821 0.5776 –0.8 0.5404 0.5339 –1.2 

0.2 0.5831 0.5785 –0.8 0.5415 0.5348 –1.2 

0.4 0.5908 0.5862 –0.8 0.5492 0.5425 –1.2 

0.6 0.6200 0.6152 –0.8 0.5784 0.5715 –1.2 

0.8 0.7577 0.7519 –0.8 0.7157 0.7078 –1.1 

0.9 1.1263 1.1175 –0.8 1.0813 1.0705 –1.0 

0.92 1.3318 1.3212 –0.8 1.2842 1.2715 –1.0 

0.94 1.6896 1.6754 –0.9 1.6364 1.6201 –1.0 

0.96 2.4339 2.4108 –0.9 2.3662 2.3412 –1.0 

0.98 4.7372 4.6752 –1.3 4.6171 4.5532 –1.4 

0.99 9.4051 9.2116 –2.1 9.1720 8.9766 –2.1 

Table 2 

Non-dimensional spreading thermal resistance of circular isothermal source in a half- 

space. 

Source type Bejan and Kraus [23] Present analysis Difference [%] 

Isoflux ( ν = 0 ) 8 / 3 π2 0.2726 0.9 

Isothermal ( ν = −1 / 2 ) 1 / 4 0.2542 1.7 

Table 3 

Non-dimensional spreading thermal resistance isothermal circular source on a thin infinite disk. 

χ R ∗ = 4 kcR ( ν = −1 / 2 ) χ R ∗ = 4 kcR ( ν = −1 / 2 ) 

Yovanovich [13] Present analysis Difference [%] Yovanovich [13] Present analysis Difference [%] 

0 0.0000 0.0011 0.0 2 0.7889 0.7907 0.2 

0.1 0.1089 0.1014 –6.9 3 0.8559 0.8601 0.5 

0.2 0.2015 0.1936 –3.9 4 0.8910 0.8970 0.7 

0.3 0.2824 0.2750 –2.6 5 0.9124 0.9198 0.8 

0.4 0.3532 0.3466 –1.9 6 0.9268 0.9354 0.9 

0.5 0.4149 0.4090 –1.4 7 0.9372 0.9468 1.0 

0.6 0.4684 0.4633 –1.1 8 0.9450 0.9555 1.1 

0.7 0.5148 0.5105 –0.8 9 0.9511 0.9624 1.2 

0.8 0.5551 0.5514 –0.7 10 0.9560 0.9680 1.3 

0.9 0.5901 0.5871 –0.5 20 0.9779 0.9957 1.8 

1.0 0.6206 0.6182 –0.4 

5 



A.M. Elsafi and M. Bahrami International Journal of Heat and Mass Transfer 170 (2021) 120959 

Fig. 4. Variation of non-dimensional thermal resistance with radii ratio ε, and Biot number Bi, for: (a) α = 1 ◦, (b) α = 5 ◦, (c) α = 10 ◦, and (d) α = 15 ◦ . 
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han ±2% for χ = 0 . 4 –20 (Corresponds to ε = 0 . 65 –0.99). However,

hen 0 < χ ≤ 0 . 3 , the absolute error can reach up to 7%. This dis-

repancy between the results within this range is because, for very 

mall values of χ (very large values of ε), the flux distribution 

iven by Eq. (24) cannot be considered as a good approximation 

or the isothermal condition. For example, for χ = 0 . 1 ( ε > 0 . 99 ),

he relative difference between the minimum and maximum tem- 

erature within the half-contact angle α is > 100% . 

. Conclusions 

The analytical expressions presented in this study provide a 

uick and accurate way to determine the temperature distribu- 

ion and thermal spreading resistance of a hollow hemi-sphere 

ubjected to heat flux on the its pole, with heat being dissipated 

rom the inner surface by convection. The results show that in 

he case of low Biot number ( Bi ≤ 1 ), the thermal resistance in-

reases rapidly for large values of radii ratio. Nevertheless, thinner 

alls would be favourable to dissipate the heat to the inner surface 

hen Bi ≥ 10 . The analysis also demonstrates that smaller source 

ontact-angle will result in higher thermal resistances. 

The fundamental analysis presented herein can be used to as- 

ess the effect of heat leaks in spherical petroleum and cryogenic 

anks. It has also been shown that the analytical model can be ex- 
6 
ended to include other solutions for spreading resistance in hol- 

ow spheres with insulated walls, half-space, and infinite disk with 

sothermal end. 
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